
imstk-unity Documentation
Release 2.0.0

Kitware

Jan 05, 2024

Introduction

1 Introduction 2
1.1 Overview . 2
1.2 Limitations . 3
1.3 Project Structure . 4

2 Setup for Development 4

3 Devices 5
3.1 Debugging . 5

4 Tutorial 5

5 Example Scenes 10
5.1 ConnectiveTissue . 10
5.2 Constraining . 10
5.3 PbdClothCollision . 10
5.4 PbdClothScene . 10
5.5 PbdThread . 11
5.6 RigidBodyScene . 11
5.7 UnityController . 11
5.8 Tutorial . 11
5.9 Devices . 11

6 Usage 12

7 Component Structure 12
7.1 Infrastructure . 12
7.2 Models . 13
7.3 Model Support . 13
7.4 Supporting Classes . 14
7.5 Collisions . 15
7.6 Grasping . 15
7.7 Devices . 16
7.8 Other . 16
7.9 Classes removed in this version . 16

8 Releases 16

1

9 Apache License 17
9.1 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 17
9.2 1. Definitions. 17
9.3 2. Grant of Copyright License. 18
9.4 3. Grant of Patent License. 18
9.5 4. Redistribution. 18
9.6 5. Submission of Contributions. 18
9.7 6. Trademarks. 19
9.8 7. Disclaimer of Warranty. 19
9.9 8. Limitation of Liability. 19
9.10 9. Accepting Warranty or Additional Liability. 19
9.11 APPENDIX: How to apply the Apache License to your work . 19

10 Other Resources 20

iMSTK is a free & open source C++ toolkit for the prototyping of interactive multi-modal surgical simulations. The
iMSTK-Unity asset gives you access to its capabilities through the Unity authoring interface. While this asset is still
under development you can already exercise a variety of parts of iMSTK inside of Unity. This guide will help you get
acquainted with the architecture and workings of the plugin.

The latest version of this documentation can be found on ReadTheDocs

iMSTK-Unity

User Documentation

1 Introduction

This document describes the iMSTK-Unity interface as well as how to build and develop it.

1.1 Overview

iMSTK is a free & open source C++ toolkit for prototyping interactive multi-modal surgical simulations. The iMSTK-
Unity asset provides classes that allow the use of iMSTK features inside of unity, those are amongst others various rigid
and deformable models, collision detection and response, geometric importers and filters.

The iMSTK-Unity classes utilizes a C# interface of iMSTK that is generated by using the SWIG tool. This interface is
wrapped around most C++ functions and forwards its calls to the original C++ code. This allows you to use iMSTK in
C# almost the same way as you would in C++.

2

https://www.imstk.org/
https://imstk-unity.readthedocs.io/en/latest/
https://www.swig.org/

1.2 Limitations

Not all iMSTK classes are currently accessible through the Unity layer. Additionally there may be some combinations
that have not been tested. Some errors may cause Unity to crash, save early and save often. Please report issues you
encounter in the iMSTK-Unity issue tracker

While there is an OpenHaptics asset available on the Unity Asset Store. This is currently unsupported by the iMSTK
Unity Asset. If you need support for the 3D-Touch series of devices you will have to build iMSTK with the appropriate
settings.

Avoid calling new Imstk.<ImstkClass>() as variable initializers when declaring member variables, initialize in the
constructor or later instead e.g.:

// PREFER
class Example {

Imstk.LineMesh mesh;

void Example () {
mesh = new Imstk.LineMesh();

}
}

// AVOID
class Example {

Imstk.LineMesh mesh = new Imstk.LineMesh();
}

When initializing in the member declaration you may see unexpected crashes in the binary player under windows.

3

https://gitlab.kitware.com/iMSTK/imstk-unity/-/issues
https://assetstore.unity.com/packages/tools/integration/haptics-direct-for-unity-v1-197034

1.3 Project Structure

The files of the asset are split in the following directories:

• Scripts: This directory is for the runtime scripts of the plugin.

• Scripts/Editor: This directory is for the editor scripts of the plugin. These scripts implement custom editor
functionality. Editor scripts may use runtime scripts but won’t be included in the player, which means you
should not use functions from these in your own scripts

• Resources: This directory contains resources required during runtime.

• Editor/Resources: This directory contains resources required in the editor (such as style sheets or UI markup).

• Plugins: This directory is for libraries (dlls/so) that Unity needs to load.

Directories needed for the project but not relevant to the plugin:

• Models, Materials, & Textures: These directories are for various assets used by the Demo. They are not part
of the plugin.

The asset on the store may not contain the latest version of iMSTK-Unity, if you want to be up to date you can check
out the sources from gitlab. As the binary files for iMSTK aren’t included in the repository, you will also have to build
iMSTK yourself when you go this route.

2 Setup for Development

When checking out iMSTK-Unity from gitlab you will first need to build iMSTK. iMSTK uses CMake for its build
system. iMSTK is a superbuild meaning it builds, includes, and links to all of its dependencies. There is no need to
go find them. The correct version of iMSTK is included in the repository under iMSTKSource~ as a git submodule.
To make sure it’s up to date after an update of the repository run git submodule update. To build iMSTK you will
need to use cmake. When building make sure that the build directory (where the binaries end up) is not inside the
iMSTKSource~ directory but close to the root of you drive, e.g. C:imstk-build, the iMSTK project structure is deep
enough that there are issues with windows path length. Additionally turn on the IMSTK_BUILD_FOR_UNITY cmake
switch, This will reduce the number of dependencies that are being built. It will also enable the generation of “.cs”
files as well as “.dlls”/”.so” files in your install directory that are needed by the “.cs” code. These will be used in Unity.
Optionally enable iMSTK_USE_VRPN and/or iMSTK_USE_OpenHaptics for device support.

You can install the binaries two different ways, for both methods you need to know the directory in which iMSTK was
installed. If you didn’t change anything that directory will be called install and resides inside the directory that you
defined in cmake to build imstk, e.g. C:\Projects\imstk\build\install :

• Using `ImstkSource~\InstallImstk.bat` the format is ImstkSource~\InstallImstk.bat <path
to imstk/install>

• Alternatively you can enable Developer Mode for iMSTK inside of Unity. This option ca be found in “Edit-
>Project Settings->iMSTK Settings”. When turned on, you will be prompted to install iMSTK whenever you
start Unity. After turning on this option, you may need to restart Unity. When it prompts you, select yes and
provide your iMSTK install directory, located in `<iMSTK build directory>/install`. All the necessary
files will be copied. If you don’t want to be asked to reinstall iMSTK toggle this option off again.

If you make changes in iMSTK you must reinstall it to Unity.

Note: There is a ‘Force Install’ button to install iMSTK into Unity at the instant it is clicked. This may not always
work depending on if an iMSTK script (that utilizes a given dll) has run in the editor. In that case those dll’s cannot be
unloaded from Unity.

Note: Make sure Unity is not running, even though closed it may be running in the background and prevent any
installation.

4

https://gitlab.kitware.com/iMSTK/imstk-unity

3 Devices

The asset available from the asset store does not have OpenHaptics or VRPN enabled. To use external devices you will
have to build iMSTK. When building, enable iMSTK_USE_VRPN or iMSTK_USE_OpenHaptics respectively. This will
create a version of iMSTK with device support enabled. When the build is done install iMSTK into the Unity Asset as
described above.

3.1 Debugging

Debugging may be done in visual studio, even on the native side. You must attach the debugger to Unity as you would
to any external process. With iMSTK open in visual studio, click debug->attach to process. Select the Unity executable
and make sure you’re set on native debugging.

4 Tutorial

In this tutorial we are going to assemble a simple scene containing a deformable object colliding with static scenery.
The completed tutorial is available as the Tutorial scene in the scene folder.

For the purpose of this guides component names will be written in a mono-spaced font e.g. SimulationManager,
whereas the names of GameObjects or EditorFields will be in italics e.g. HeartModel

• Create a new scene in Unity

• Set the Main Camera transform to the values as seen in the image below

• Create a new gameobject and add a SimulationManager component to it

The SimulationManager is a required component for all simulations using iMSTK-Unity, it controls initializa-
tion and updates and also lets you set a number of global variables.

• Create an empty GameObject, add a Deformable component and name it HeartModel.

5

https://support.3dsystems.com/s/article/OpenHaptics-for-Windows-Developer-Edition-v35?language=en_US
https://github.com/vrpn/vrpn

Deformable is one of the classes that iMSTK-Unity offers, it implements the PBD1 and XPBD2

methods for simulating deformable objects.

We will add geometry separately but you can also use the items under the menu iMSTK\GameObject
to add very simple objects with algorithmically generated meshes.

The Deformable has a large number of parameters but we will focus only on a few. This will even-
tually become a deformable object but there is still a lot of work to do. For more information look at
the iMSTK Documentation

We will come back to this later.

• From the Models folder add model named heart under the HeartModel GameObject

This will serve as the visual representation of what the simulation is doing, to make it look better, get
the flesh material from the Materials folder and assign it as well.

With the heart GameObject selected add a GeometryFilter component to it and drag the Mesh-
Filter component, the name will be Heart_mesh_surface (Mesh Filter) into the Mesh field of the
GeometryFilter. The drop down menu should say Unity Mesh. This makes this mesh available to
iMSTK-Unity.

For every kind of geometry you want to use in the PBD model, iMSTK-Unity needs a
GeometryFilter. This maps the Unity type to something that iMSTK can understand. It can also
be used to define fixed shapes like Plane or Capsule. For meshes the source of a Geometry filter
can either be a Unity mesh in the scene, a mesh asset, or (especially for tetrahedral meshes) an asset
imported by the geometry importer of iMSTK-Unity.

You can use the check box named Show Handles to verify that the mesh is in the correct location. If
you don’t see the mesh, make sure the Gizmos are turned on for the scene view.

• Set up the parameters for our Deformable

First check the Distance Stiffness, Volume Stiffness and fill in the properties as you see in the image below. This
sets the material properties of this object. Uncheck all other stiffness options.

The Mass and Uniform Mass Value fields are dependent on each other. The Uniform Mass Value is a per
node/vertex value.

1

M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based dynamics,” Journal of Visual Communication and Image Representation,
vol. 18, no. 2, pp. 109–118, Apr. 2007, doi: 10.1016/j.jvcir.2007.01.005.

2

M. Macklin, M. Müller, and N. Chentanez, “XPBD: position-based simulation of compliant constrained dynamics,” in Proceedings of the 9th
International Conference on Motion in Games, Burlingame California, Oct. 2016, pp. 49–54. doi: 10.1145/2994258.2994272.

6

https://imstk.readthedocs.io/en/latest/PbdModel.html

Note: While iMSTK is inherently unitless, the default value in the simulation manager for gravity
is 9.81 m/s^2. And the unmodified output of the haptic device in Newtons. If you want to use the
default values, you should use meters and kilograms for your objects. Otherwise you need to modify
the gravity and the forceScaling parameter in the OpenHapticsDevice. To match the units you
want to use.

• Add a GeometryFilter to use in the simulation

We will need a mesh to use as the geometry for calculating the physical behavior of our object. Add a
GeometryFilter to the HeartModel object. As we will use a tetrahedral mesh, the method to assign the mesh
is slightly different than what we used before. First Select Tetrahedral Mesh in the drop down menu. Then click
on the o icon to the right of the Mesh input field. This will bring up an input dialog. Select the “Assets” tab, and
double click the item name heart_mesh.

As you can see the GeometryFilter component can be used for meshes in the scene or just assets of the project.

• Now we will set the shapes that are being used for simulation and visualization.

The Deformable uses three different geometries

– Visual Geometry is the geometry that is being shown on the screen, this is usually some textured mesh

7

– Physics Geometry is the geometry that is being used in the simulation

– Collision Geometry is the geometry that is being used to determine collisions with other objects.

The tetrahedral mesh that was set up in the previous step will be used for the Physics Geometry; the other mesh
from earlier will be used for the two other geometries.

First Drag the Geometry Filter that you just created into the Physics Geometry of the Deformable compo-
nent. Then drag the heart GameObject from the hierarchy view to both the Visual Geometry and the Collision
Geometry fields.

As we used different geometries for visualization and simulation we need a way to keep those in the same state,
this is the responsibility of the GeometryMap component. Add one and drag the HeartModel Gameobject into
the Parent Geom slot. Then drag the heart GameObject into the Child Geom slot. Additionally make sure the
Force One One is checked.

This concludes the setup for the Deformable object.

You should be able to run the scene now but as there are no other objects to interact with the heart will just succumb
to gravity and drop on the ground.

• Let’s add a plane for collisions

Instead of meshes we will use a fixed shape for the other side of the collision. In the hierarchy view add a Plane
and move it to a position of 0.0, -2.5, and 0.0. Add a Geometry Filter to the plane object and select Plane
in the drop down menu. The default settings for the plane will work, its position and normal will be calculated
from the transform. Even though the visual mesh of the plan is finite in the editor, with regards to iMSTK this
plane is infinite.

To enable the plane to interact with other iMSTK objects we need to set up a model for it as well. Add a
StaticModel component to the Plane object and drag the GeometryFilter component into the Collision
Geometry field. A StaticModel represents an object that participates in collision but doesn’t react.

8

• Add the interaction between the Heart and the Plane

iMSTK needs to know about which objects can interact with each other, in this case we want the heart and the
plane to collide with each other. Click on the left pointing arrow at the bottom of the Deformable component
to expand the Collision section. Here you will always see a list of all the objects that can be collided with, click
on the checkbox next to “Plane” to enable the collision between the heart and the plane. In almost all cases you
should be able to leave the other parameters at their default values.

• This concludes the tutorial scene setup, press play you should see the deformable object hit the plane and bounce
slightly on it.

9

Please note that at the moment iMSTK-Unity is very sensitive to misconfigurations and may cause Unity to crash, we
are working to improve the error handling and stability both on the Unity asset side and inside the iMSTK sources.

5 Example Scenes

5.1 ConnectiveTissue

Demonstrates the connective tissue attached to two deformable objects

5.2 Constraining

Shows various ways of how to constrain deformables to each other and to the surrounding space

5.3 PbdClothCollision

A scene with a freely moving deformable item (Cloth) that demonstrates how to set up a deformable (PBDCloth) with
and various static obstacles.

5.4 PbdClothScene

A cloth constrained on the top that demonstrates how to set up boundary conditions on a PbdObject

10

5.5 PbdThread

This demonstrates a line mesh that can be used as a thread

5.6 RigidBodyScene

This is a simple example of two rigid spheres colliding with each other and the scenery. Uses geometric shapes rather
than meshes, static colliders and collisions between dynamic objects

5.7 UnityController

Demonstrates how to control an iMSTK Rigid via a RigidController and a Unity transform. The syringe in the scene
can be moved around via the keys, the UnityDrivenDevice takes the position and orientation of the object its assigned
to and sends it to iMSTK. The object will collide with the cube in the scene. If you want to control and object in iMSTK
via VR controllers this is the path to take.

5.8 Tutorial

A scene that is used in the tutorial. It uses a deformable model colliding with a plane

5.9 Devices

The scenes in the devices folder can only be used with VRPN or OpenHaptics built. You will have to build iMSTK and
install it into the asset as described in Setup for Development to support these features. You can check for the supported
devices in the installation that you have by opening the Edit/ProjectSettings/Player panel in the editor and
navigating to the section Script Compilation. Any Devices that are built into your iMSTK installation will show
up here as IMSTK_USE_<Device>. iMSTK-Unity will have code that is optionally enabled when one or more of the
symbols in this panel is defined.

Grasping

This scene demonstrates how to use the SimpleGrasping component together with the GraspingManager to enable
the grasping of different objects.

RigidController

This sets up a OpenHapticsDevice with a Rigid and a RigidController to show how these pieces are interactive

RigidControllerVRPN

Uses the VRPNDevice in the same scene as the RigidController

11

TissueContact and PbdThinTissueContact

Demonstrates the use of a rigid with haptics interacting with two kinds of simulated tissue

6 Usage

For minimal usage of iMSTK-Unity, two things must be added to a Unity Scene.

• A GameObject with a SimulationManager attached to it

• A GameObject with either a Deformable or a Rigid.

Commonly a PhysicsGeometry is also needed on the Model GameObject.

This document will denote some of the basic classes available in iMSTK-Unity. For more information refer to the the
source code documentation and the iMSTK documentation.

7 Component Structure

While the iMSTK C# wrapper supports almost all iMSTK classes. There is a subset that is made available as Unity
components. These can be assembled in the editor to create simulations using iMSTK inside of Unity. The following
section describes the roles and responsibilities of the available iMSTK-Unity classes.

While most components can be enabled and disabled in the Editor this will only be effective during the editing process.
Disabled components will not be used for simulation. _BUT_ enabling or disabling a component during runtime will
not affect the simulation and may cause issues. We also have made efforts to check for disabled components in other
components that depend on them. If you find any combinations that do not work correctly please let us know.

7.1 Infrastructure

SimulationManager

This is a component responsible for controlling the simulation. There may only exist one. It also controls the construc-
tion, initialization, and destruction of iMSTKBehaviour to ensure execution ordering:

• Simulation Manager created

• iMSTK objects created and internally initialized

• iMSTK objects externally initialized

• SimulationManager Start

• Updates

• iMSTK objects cleaned up

• SimulationManager cleaned up.

This component is required to be in the scene for simulations to run. It is created before any other iMSTK components
on any GameObject. It implements the start, stop, pause, and other global scene related tasks.

12

iMSTKBehaviour

An extension of MonoBehaviour to provide different callbacks for special construction, initialization, and destruction
ordering. This is the base class for most iMSTK components. If you are creating a new component that needs to be
initialized by the SimulationManager it should inherit from this class.

7.2 Models

The following classes are the building blocks of any simulation scene, these are the things that interact with each other
and the world.

Deformable

Use this to represent deformable objects. Position Based Dynamics (PBD), is used to model the deformation. This
model supports Lines (1D), Surface Meshes (2D) and, Tetrahedral Meshes (3D) dynamical models see the iMSTK
Documentation for more information on constraints and models. Visual, physics and collision geometry can be assigned
separately. If you do, a separate map will be necessary to update the various meshes.

The physics geometry determines the type of constraint that can be used, an invalid constraint may cause problems.

Table 1: Valid Constraint Combinations
Physics Geometry Type Valid Constraints
Line Mesh (Threads) Distance Stiffness, Bend Stiffness
Surface Mesh (Membranes, Bags) Distance Stiffness, Dihedral Stiffness, Area Stiffness
Volumentric Mesh (Tissue) Distance Stiffness, Volume Stiffness, Fem (all models)

Rigid

Use this to represent movable rigid object use this to represent movable rigid objects like forceps or scalpels. Physics
and collision geometry can be assigned separately. Implements a rigid body using position based dynamics from imstk.
Please note there are two ways rigids will be used in the simulation, one is as free rigid bodies like a needle or staples.
The other is as tools that are driven via a controller through a device. Currently free rigids cannot be transformed
through a unity parent transform.

StaticModel

Use this to represent un-moveable rigid objects like the ground plane or other obstacles.

7.3 Model Support

When creating a model you will need to assign a geometry to it. And possibly a geometry map as well.

13

https://imstk.gitlab.io/Dynamical_Models/PbdModel.html
https://imstk.gitlab.io/Dynamical_Models/PbdModel.html

GeometryFilter

Similar to a MeshFilter in Unity. It provides an input and output geometry. It may take in any iMSTK geometry, as well
as a Unity Mesh (one can also drag/drop a MeshFilter to it). These are instances of geometries used in all of iMSTK
unity scripts. Instances of this class fit into the Visual Geometry, Physics Geometry, and Collision Geometry
slots on the model components.

GeometryMap

Allows the use of separate meshes for the deformable, visual and collision representation. Will move the vertices of
the target mesh according to matching points on the source mesh The points do not have to completely coincide. In
almost all cases you will need to map FROM the physics mesh TO the visual mesh, and FROM the physics mesh TO
the collision mesh.

7.4 Supporting Classes

The following classes are used to your simulation development and provide additional functionality. This is not an
exhaustive list, please check the source code for more information.

ConstrainDeformables

This will set up a set of distance constraints between two deformable objects. The constraints will be limited to the area
encompassed by the assigned mesh,. constraints will be generated for _all_ pairs of points whose distance is smaller
than or equal the cutoff distance. The length of the constraint will be set to the original distance * restLength. Use this
if you want to attach a deformable to another deformable. E.g. a vessel to another organ.

ConstrainInSpace

This will set up a set of distance constraints between the points of deformable that are found inside the constrained area
and virtual points, effectively attaching the deformable to those points in space. The constraints will be limited to the
area encompassed by the assigned mesh constraints will be generated for _all_ points. The length of the constraint will
be set to restLength. Use this if you want to attach a deformable to a point in space. E.g. Suspend an organ in the
body cavity.

ConnectiveTissue

This component represents connective tissue as a multitude of strands between opposing surfaces. Given two opposing
geometries strands will be generated with configurable parameters. The generated object is physical and can be inter-
acted with. The connective tissue will consist of multiple “strands” each going from one of the reference objects to the
other. Each strand will be made up of a given number of segments. The amount of strands is roughly the number of
faces on one bounding object * segmentsPerFace. Note that increasing the density and/or the number of segments
per strand will also increase the computational load to simulate this object.

14

RigidController

Object used between a device handled by the user and a Rigid. It utilizes a mass spring system to correct for latency
in the system. It corrects for problems with haptics in simulation systems. By manipulating the spring parameters the
haptic response can be tuned to the behavior of the computer and the simulated system.

7.5 Collisions

While you can set up a collision using the CollisionInteraction class it is easier to use the Collisions panel that
is situated in both of the Deformable and Rigid components. This panel will allow you to set up collisions between
the object and the world, as well as other objects. CollisionInteraction class is used to set up collisions between
two objects.

CollisionInteraction

Use this behavior to set up collisions between two objects, in general this behavior can detect what the type of the two
objects is that are interacting (mode Auto). But you can also select the algorithm that should be used.

7.6 Grasping

Grasping is handled via the Grasping component. But in almost all cases it will be easier to utilize the
GraspingManager as it will handle the creation and destruction of the Grasping component for you. If you have
tools that you want to manipulate you can also investigate the GraspingController it can play hand in hand with the
above components but also deals with animating tool jaws for example.

Importers

iMSTK-Unity provides a custom Unity importer to import geometry using iMSTK. This can import point, line, surface,
tetrahedral, & hexahedral meshes (vtk, vtu, stl, ply, veg, . . .). If the mesh imported is a point, line, or surface mesh
then it will be imported as a Unity Mesh object. Anything else not supported by Unity, is loaded as an iMSTK-Unity
Geometry Object. When a volumetric mesh (such as a tetrahedral mesh) is imported the accompanying surface is
extracted and provided as an additional asset.

Editor Scripts

iMSTK-Unity provides extensions to the Unity editor. These extensions include:

• Custom inspectors for the models and geometry components.

• A global settings menu.

• Menu Items for quick creation of GameObject with iMSTK items already setup.

• Editors/windows for various operations

15

7.7 Devices

OpenHapticsDevice

This device is only available with a custom build of iMSTK. It enables the use of the 3DSystems haptic device family.

VrpnDevice

This device is only available with a custom build if iMSTK. It enables interactions with devices run by a VRPN server.

7.8 Other

SimulationStats

This component can be used to display timing information on the game screen, this is aside the data that is pushed to
the profiler. The data shown is the Update() rate, the avg. time used to run 1 physics update simulationManager-
>advance() and information about mesh updates.

7.9 Classes removed in this version

• RbdModel has been removed, use Rigid instead.

• PbdModel has been removed, use Deformable instead.

• PbdRigidGraspingInteraction has been removed, use Grasping instead.

8 Releases

2023-oct v2.0

• iMSTK Version 7.0

• Unity 2021.3

• Refactored PbdObject to Deformable and Rigid

• Added Collision Editing to Deformable and Rigid

• Decoupled Simulation manager from Unity fixed update

• Enhanced Support for Grasping w/ Unity Editors

• Support for anisotropic deformables

• Support for constraining deformables through Unity meshes

• Support for suturing

• Better handling of disabled components

• Various Bug fixes

2022-jul v1.0 First release (amongst others):

• iMSTK Version 6.0

• Support to import VTK and other mesh formats (e.g. vtk, vtu, stl, ply, veg, . . .)

16

https://www.3dsystems.com/haptics
https://github.com/vrpn/vrpn

• Deformable & Rigid Body Models to be used in Unity

• Custom Editors for iMSTK Behaviors

• Helper Scripts to create simple dynamic objects

9 Apache License

Version 2.0

Date January 2004

URL http://www.apache.org/licenses/

9.1 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

9.2 1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications
or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in
the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright
owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication
sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists,
source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been
received by Licensor and subsequently incorporated within the Work.

17

http://www.apache.org/licenses/

9.3 2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-
exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

9.4 3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

9.5 4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

• You must give any other recipients of the Work or Derivative Works a copy of this License; and

• You must cause any modified files to carry prominent notices stating that You changed the files; and

• You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,
and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

• If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-
party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices
cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications
and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your
modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution
of the Work otherwise complies with the conditions stated in this License.

9.6 5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwith-
standing the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

18

9.7 6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

9.8 7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for deter-
mining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

9.9 8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by
applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to
You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if
such Contributor has been advised of the possibility of such damages.

9.10 9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

9.11 APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
“[]” replaced with your own identifying information. (Don’t include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose
be included on the same “printed page” as the copyright notice for easier identification within third-party archives.

Copyright 2020 iMSTK-Unity

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

19

(continued from previous page)

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

10 Other Resources

• iMSTK Discourse Forum

• iMSTK-Unity Gitlab

• iMSTK Documentation

• iMSTK Gitlab

20

https://discourse.kitware.com/c/imstk/9
https://gitlab.kitware.com/iMSTK/imstk-unity/
https://imstk.readthedocs.io/en/latest/
https://gitlab.kitware.com/iMSTK/iMSTK

	Introduction
	Overview
	Limitations
	Project Structure

	Setup for Development
	Devices
	Debugging

	Tutorial
	Example Scenes
	ConnectiveTissue
	Constraining
	PbdClothCollision
	PbdClothScene
	PbdThread
	RigidBodyScene
	UnityController
	Tutorial
	Devices
	Grasping
	RigidController
	RigidControllerVRPN
	TissueContact and PbdThinTissueContact

	Usage
	Component Structure
	Infrastructure
	SimulationManager
	iMSTKBehaviour

	Models
	Deformable
	Rigid
	StaticModel

	Model Support
	GeometryFilter
	GeometryMap

	Supporting Classes
	ConstrainDeformables
	ConstrainInSpace
	ConnectiveTissue
	RigidController

	Collisions
	CollisionInteraction

	Grasping
	Importers
	Editor Scripts

	Devices
	OpenHapticsDevice
	VrpnDevice

	Other
	SimulationStats

	Classes removed in this version

	Releases
	Apache License
	TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
	1. Definitions.
	2. Grant of Copyright License.
	3. Grant of Patent License.
	4. Redistribution.
	5. Submission of Contributions.
	6. Trademarks.
	7. Disclaimer of Warranty.
	8. Limitation of Liability.
	9. Accepting Warranty or Additional Liability.
	APPENDIX: How to apply the Apache License to your work

	Other Resources

